Read more articles from Ian on Process Safety Management on SciTech Connect:
Share this article:
Over the course of the last two years I have published the occasional post on the topic of “Engineering in an Age of Limits” at https://peakengineering.wordpress.com. I have also, over an even longer span of the years, published many books to do with process engineering and process safety/risk management (Sutton Technical Books at www.stb07.com). The natural next step is to combine the two activities and write a book with the title Engineering in an Age of Limits. However, I have put off doing so because it really doesn’t seem as if there is a market for such a book. It is a downer of a topic and most engineers are inherently optimistic — they believe that “they” will “come up with something” to address the myriad of problems that we face. However, because the issues to do with living in an Age of Limits are so important, and because engineers can make a major contribution to the structure of the world that we are entering, I have decided to go ahead with the project — even if sales of the book itself turn out to be miserable.
My approach to the writing of this book will be to publish a blog post at regular intervals (this is the first). The posts will not only provide the materials that will eventually make up the book they will also provide a means whereby I can solicit feedback from my readers. I have also created a LinkedIn page to facilitate discussion on these topics.
This article originally appeared on Peak Engineering. Click here for the original article or continue reading below:
There are two basic themes behind this series of posts (and of the book that may get written). The first theme is that our society is well into an Age of Limits: limits to the natural resources that we can exploit, limits to the extent to which we can continue dumping our wastes into the air and sea and onto the land, and limits to our financial reserves. The second theme is that engineers are in a position to help us make the transition to the society that is to come; they did it once already, at the beginning of the 18th century, and they may be able to do it again.
I will develop these two themes in future posts. For now, here are some parameters that will frame the discussions.
One of the reasons that we often have trouble understanding what is going on is that there are three vectors that need to be considered. These are:
These three topics all affect one another. For example, the easy to access resources are extracted first. The development of subsequent resources has a greater environmental impact. And the development of the later sources of energy requires ever increasing levels of investment. The three topics also tend to work on different time scales. The economic situation can change dramatically almost overnight. The resource picture changes more gradually, and environmental changes are more gradual still.
It is not the purpose of this series of posts to try and predict the future in detail. All that anyone can predict, and then with a healthy dose of caution, is the general outline of a world of limits. As Wendell Berry said in his post To Save the Future, Live in the Present,
So far as I am concerned, the future has no narrative. The future does not exist until it has become the past. To a very limited extent, prediction has worked. The sun, so far, has set and risen as we have expected it to do . . . all we can do to prepare rightly for tomorrow is to do the right thing today.
The only certainty is that the future will not look like either the present industrial age or the time before it — we will create what is sometimes referred to as an Hegelian Synthesis, as shown in the sketch below. The “Thesis” in this sketch is the pre-industrial era — before the year 1712. The “Anti-Thesis” represents our current time: the industrial era. The “Synthesis” combines features of both the Thesis and the Anti-Thesis but is identical to neither.
Given that we cannot predict the future it is still necessary to think though the broad outlines of where we are going. The following are the parameters that make up my own view of the Age of Limits Hegelian synthesis.
The purpose of this blog series is not only to explore the multiple dilemmas that we have created for ourselves, but also to think through how engineers can help us navigate the troubled waters that lie ahead.
First we must recognize that engineers are the woof and warp of the industrial era. Consider Newcomen’s crude but effective steam-driven water pump. It is based on the thermodynamic understanding that energy from fossil fuels can create useful work (mechanical engineering). The engine was located inside a boiler-house that supported the power beam (civil engineering). His successors would replace the human who operated the valves with automated systems (instrument engineering) and they would use the principles of his engine his engine to create railroads, steam ships and electric power plants.
If engineers were instrumental in creating the society in which we live then maybe engineers have a responsibility to work out a path forward. What skills and attributes do engineers bring to the challenges that we face? Well, here are a few. We will discuss others in future posts.
I recognize that the majority of engineers work for large companies, either directly or indirectly. Even though individual engineers may understand the issues that are discussed here, their day to day work is part of existing industrial systems. There is no easy solution to this dilemma — only when industrial companies recognize that they will need to change their way of thinking (and that they can make a profit doing so) will these engineers have an opportunity to share their ideas.
The key to understanding what happened in the first part of the 18th century is to realize that engineering was a consequence of the first inventions such as Necomen’s steam engine. Engineers did not respond to the first energy crisis, they were made by it. So it will be in the coming years — the responses to the challenges that we face will address the reality of what is taking place. It will not be the role of engineers to desperately maintain the status quo.
But, if engineers and the companies that they work for can develop an understanding of the parameters of the Age of Limits then they have an opportunity not only to develop new technologies but also to create a new type of society. Their inventions will lead to the development of new industries, even to new types of society of ways of living. Indeed, if they become truly successful these engineers may get their names on a postage stamp.
Read more articles from Ian on Process Safety Management on SciTech Connect:
Jack of All Trades, Master of None
About the Author
Ian Sutton is a chemical engineer with over 30 years of design and operating experience in the process industries. He provides services in all areas of process design, plant operations and process safety management — both onshore and offshore. He provides consulting services to senior management on the implementation, effectiveness and cost of process safety and risk management programs. His clients include companies in oil and gas production and refining, pipelines, chemicals, minerals processing, and food production.
You can follow along with Ian’s thoughts and musing on process safety at his personal blog, The PSM Report here.
He has published the following books with Elsevier:
Engineering brings science and technology out of the lab and into the real world. Often without thinking about it, we engage every day with technology that is the product of careful, precise design and execution by engineers in electronics, optics, and communications; embedded systems; automotive, aerospace, and marine; mechanical; and many other disciplines. For decades, Elsevier has maintained and grown extensive collections in these and other cutting-edge areas, like biomechanics and nanotechnology, through our trusted imprints: Newnes, Academic Press, and Woodhead Publishing. In addition, our powerful online platforms like Knovel and Engineering Village help streamline research and development processes for users around the world.