Biogeochemistry of Marine Dissolved Organic Matter, 2e

The definitive, authoritative reference work on the chemistry and ecology of marine dissolved organic matter.

Edited by: Dennis A. Hansell University of Miami, FL, USA
Craig A. Carlson University of California, Santa Barbara, USA

From the First Edition: "...the definitive, authoritative reference work on the chemistry and ecology of marine DOM."-Don L. Rice, National Science Foundation, Arlington, Virginia, U.S.A.

KEY FEATURES
- Features up-to-date knowledge of DOM, including five new chapters
- The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea
- Includes chapters that address inputs from freshwater terrestrial DOM

DESCRIPTION
Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists.

Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic.
TABLE OF CONTENTS

1. DOM and the Carbon Cycle of Ancient Oceans
2. DOM Composition
3. Production and Consumption Processes
4. Production and Consumption Processes
5. Dynamics of DON
6. Dynamics of DOP
7. DOM, Trace Elements and Isotopes
8. Carbon Isotopic Composition
9. Long-term Stability of Marine DOM
10. Air/Sea Interactions and Photochemistry
11. Biophysical Dynamics
12. Chromophoric DOM Characterization and Sensing
13. Terrigenous DOM Qualities and Fate in the Marine Environment
14. Sediment Pore Waters
15. DOC in the Mediterranean Sea
16. DO in the Ocean Carbon Budget
17. Modeling DOM Biogeochemistry