## Contents

Foreword by Roberta A. Gottlieb  xvii  
Foreword by Eeva-Liisa Eskelinen  xix  
Preface  xxi  
Contributors  xxv  
Abbreviations and Glossary  xxix  
Autophagy: Volume 1 – Contributions  xxxix  
Autophagy: Volume 2 – Contributions  xli  
Autophagy: Volume 3 – Contributions  xliii  
Autophagy: Volume 4 – Contributions  xlv  

### I  ROLE OF AUTOPHAGY IN CANCER  

2. Molecular Cross-Talk between the Autophagy and Apoptotic Networks in Cancer  
JAMES J. DRISCOLL AND MOHAMED ABDEL MALEK  

Introduction  52  
Dual Effector Molecules of Autophagy and Apoptosis  53  
Molecular Cross-Talk between Autophagy and the Ubiquitin + Proteasome System  56  
Molecular Linkage of the UPS with Aggresomes and Selective Autophagy  60  
Conclusion  61  
References  62  

3. Inhibition of ErbB Receptors and Autophagy in Cancer Therapy  
ERAN SCHMUKLER AND RONIT PINKAS-KRAMARSKI  

Introduction  66  
Autophagy  66  
ErbB Family of Receptor Tyrosine Kinases  67  
EGFR (ErbB1) and Autophagy  69  
ErbB2 (HER2/NEU) and Autophagy  74  
ErbB3 and ErbB4 and Autophagy  76  

---  

1. Introduction to Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, Volume 5  
M.A. HAYAT  

Introduction  2  
Specific Functions of Autophagy (A Summary)  4  
Autophagy in Normal Mammalian Cells  4  
Endoplasmic Reticulum Stress and Autophagy  5  
Major Types of Autophagies  6  
Autophagosomal Formation  8  
Autophagic Lysosome Reformation  9  
Autophagic Proteins  10  
Monitoring Autophagy  13  
Reactive Oxygen Species (ROS)  14  
Mammalian Target of Rapamycin (mTOR)  14  
Role of Autophagy in Tumorigenesis and Cancer  15  
Role of Autophagy in Immunity  17  
Autophagy and Senescence  19  
Role of Autophagy in Viral Defense and Replication  19  
Role of Autophagy in Intracellular Bacterial Infection  20  
Role of Autophagy in Heart Disease  21  
Role of Autophagy in Neurodegenerative Diseases  22  
Cross-Talk between Autophagy and Apoptosis  24  
Autophagy and Ubiquitination  28  
Aggresome: Ubiquitin Proteasome and Autophagy Systems  29  
Autophagy and Necroptosis  29  
Mitochondrial Fusion and Fission  30  
Selective Autophagies  31  
References  41
Discussion 76
Acknowledgments 78
References 78

4. Ginsenoside F2 Initiates an Autophagic Progression in Breast Cancer Stem Cells
SOMI KIM CHO AND YEON WOO SONG

Introduction 82
Autophagy 82
Autophagy Induced by Ginsenoside F2 in Breast Cancer Stem Cells 83
Discussion 87
Acknowledgments 89
References 89

5. Role of Autophagy in Cancer Therapy
RICARDO GARGINI AND MARTA IZQUIERDO

Introduction 92
Autophagy and Cell Signaling 93
Autophagy and Cell Death: Implication in Cancer 95
The Role of Autophagy in Cancer Is Context Dependent: Oncogene Transformation versus Established Tumors 97
Mitophagy, ROS, and Cancer 98
Cancer Stem Cells and Autophagy 99
Cancer Therapy by Modulating Autophagy 100
Discussion 100
References 102

Therapeutic Perspectives Related to Autophagy in Glioblastoma 114
Switch between Apoptosis and Autophagy 118
Conclusion 119
References 119

7. Blockage of Lysosomal Degradation Is Detrimental to Cancer Cell Survival: Role of Autophagy Activation
JESSICA L. SCHWARTZ-ROBERTS AND ROBERT CLARKE

Introduction 122
Lysosomes 123
Blockage of Lysosomal Degradation in Cancer 126
Discussion 130
Acknowledgments 132
References 132

8. Induction of Protective Autophagy in Cancer Cells by NAE Inhibitor MLN4924
YANAN JIANG, LIJUN JIA, AND YI SUN

Introduction 136
Autophagy 136
Neddylation 138
MLN4924, a Small Molecule Inhibitor of NAE 139
Discussion 140
References 142

9. Effect of Autophagy on Chemotherapy-Induced Apoptosis and Growth Inhibition
SHANSHAN ZHANG, XIANLING GUO, JIANRUI SONG, KAI SUN, YUJIAO SONG, AND LIXIN WEI

Introduction 146
Autophagy and Chemotherapy-Induced Apoptosis and Growth Inhibition 147
Autophagy, Tumor Microenvironment, and Chemoresistance 149
Autophagy and DNA Damage-Inducing Chemotherapy 151
Autophagy and Cancer Stem Cells in Chemoresistance 152
Conclusion 154
References 154

6. Autophagy in Human Brain Cancer: Therapeutic Implications
CLELIA MIRACCO, SILVIA PALUMBO, LUIGI PIRTOLO, AND SERGIO COMINCINI

Introduction 106
Background on Autophagy 107
Autophagy and Its Flux 108
Expression of Autophagy Regulators and Associated Factors in Human Glioblastoma Tissue 110
Signaling Pathways, miRNA Regulating Autophagy, and Glioblastoma 112

Switch between Apoptosis and Autophagy 118
Conclusion 119
References 119

Therapeutic Perspectives Related to Autophagy in Glioblastoma 114
Switch between Apoptosis and Autophagy 118
Conclusion 119
References 119

7. Blockage of Lysosomal Degradation Is Detrimental to Cancer Cell Survival: Role of Autophagy Activation
JESSICA L. SCHWARTZ-ROBERTS AND ROBERT CLARKE

Introduction 122
Lysosomes 123
Blockage of Lysosomal Degradation in Cancer 126
Discussion 130
Acknowledgments 132
References 132

8. Induction of Protective Autophagy in Cancer Cells by NAE Inhibitor MLN4924
YANAN JIANG, LIJUN JIA, AND YI SUN

Introduction 136
Autophagy 136
Neddylation 138
MLN4924, a Small Molecule Inhibitor of NAE 139
Discussion 140
References 142

9. Effect of Autophagy on Chemotherapy-Induced Apoptosis and Growth Inhibition
SHANSHAN ZHANG, XIANLING GUO, JIANRUI SONG, KAI SUN, YUJIAO SONG, AND LIXIN WEI

Introduction 146
Autophagy and Chemotherapy-Induced Apoptosis and Growth Inhibition 147
Autophagy, Tumor Microenvironment, and Chemoresistance 149
Autophagy and DNA Damage-Inducing Chemotherapy 151
Autophagy and Cancer Stem Cells in Chemoresistance 152
Conclusion 154
References 154

6. Autophagy in Human Brain Cancer: Therapeutic Implications
CLELIA MIRACCO, SILVIA PALUMBO, LUIGI PIRTOLO, AND SERGIO COMINCINI

Introduction 106
Background on Autophagy 107
Autophagy and Its Flux 108
Expression of Autophagy Regulators and Associated Factors in Human Glioblastoma Tissue 110
Signaling Pathways, miRNA Regulating Autophagy, and Glioblastoma 112

Therapeutic Perspectives Related to Autophagy in Glioblastoma 114
Switch between Apoptosis and Autophagy 118
Conclusion 119
References 119

7. Blockage of Lysosomal Degradation Is Detrimental to Cancer Cell Survival: Role of Autophagy Activation
JESSICA L. SCHWARTZ-ROBERTS AND ROBERT CLARKE

Introduction 122
Lysosomes 123
Blockage of Lysosomal Degradation in Cancer 126
Discussion 130
Acknowledgments 132
References 132

8. Induction of Protective Autophagy in Cancer Cells by NAE Inhibitor MLN4924
YANAN JIANG, LIJUN JIA, AND YI SUN

Introduction 136
Autophagy 136
Neddylation 138
MLN4924, a Small Molecule Inhibitor of NAE 139
Discussion 140
References 142

9. Effect of Autophagy on Chemotherapy-Induced Apoptosis and Growth Inhibition
SHANSHAN ZHANG, XIANLING GUO, JIANRUI SONG, KAI SUN, YUJIAO SONG, AND LIXIN WEI

Introduction 146
Autophagy and Chemotherapy-Induced Apoptosis and Growth Inhibition 147
Autophagy, Tumor Microenvironment, and Chemoresistance 149
Autophagy and DNA Damage-Inducing Chemotherapy 151
Autophagy and Cancer Stem Cells in Chemoresistance 152
Conclusion 154
References 154
10. Autophagy Upregulation Reduces Doxorubicin-Induced Cardiotoxicity
BALINDIWE J.N. SISHI

Introduction 158
Anthracycline-Induced Cardiotoxicity 159
The Oxidative Stress Hypothesis 162
Autophagy 164
Autophagy Induction as a Mechanism to Reduce Doxorubicin-Induced Cardiotoxicity 168
Summary 170
Acknowledgments 171
References 171

II

ROLE OF AUTOPHAGY IN CARDIOVASCULAR, METABOLIC, AND NEURODEGENERATIVE DISEASES

11. Autophagy in Critical Illness
RAJESH K. ANEJA, ALICIA K. AU, DIANA PANG, AND ROBERT S.B. CLARK

Introduction 177
Autophagy in Critical Illness – the Role of Nutrient Restriction, Deprivation, and/or Starvation 180
Autophagy in Brain Injury 181
Autophagy in Infection and Inflammation 183
Therapeutic Target 187
References 188

12. Autophagy in the Onset of Atrial Fibrillation
RODRIGO TRONCOSO, HUGO VERDEJO, CLARA QUIROGA, ZULLY PEDROZO, RAMÓN CORBALÁN, AND LORENA GARCÍA

Introduction 194
Mechanisms of Atrial Fibrillation 194
Drugs used for Treating Atrial Fibrillation 195
Autophagy in Atrial Fibrillation 196
Potential Role of Modulators of Autophagy in the Treatment of Atrial Fibrillation 198
Conclusion 199
Acknowledgments 199
References 199

13. Role of Autophagy in Atherogenesis
PEGGY ROBINET AND JONATHAN D. SMITH

Introduction 204
Autophagy in the Major Cell Types Involved in Atherosclerosis 204
Role of Autophagy in Lipid Metabolism 206
Recent Discoveries About Autophagy and Atherosclerosis in Animal Models 208
Autophagy: A Target for Atherosclerosis Treatment 209
Conclusion 209
Acknowledgments 209
References 209

14. Regulation of Autophagy in Insulin Resistance and Type 2 Diabetes
MONIKA CAHOVA

Introduction 214
Main Regulatory Mechanisms 215
Regulation of Autophagy in Insulin Resistance or T2DM in Different Organs 217
Conclusion 233
Acknowledgments 233
References 234

15. Pancreatic Beta Cell Autophagy and Islet Transplantation
SUBBIAH PUGAZHENTHI

Introduction 238
Induction of Autophagy in MIN6 Cells and in Human Islets 239
Fatty Acids, Beta Cell Autophagy, and Lipotoxicity 240
Beta Cell Autophagy in Diabetes 241
Crosstalk between Autophagy and Apoptosis 241
Autophagy in the Islet Transplantation Setting 242
Hypoxia and Autophagy 243
Targeting Autophagy to Improve the Survival of Transplanted Islets 245
References 246

16. Autophagy Guards Against Immunosuppression and Renal Ischemia-Reperfusion Injury in Renal Transplantation
YOSHITAKA ISAKA, TOMONORI KIMURA, ATSUSHI TAKAHASHI, AND YOSHITSUGU TAKABATAKE

Introduction 250
Basal Autophagic Activity 250
Autophagy and I/R Injury 252
Protective Mechanisms 253
Autophagy and Immunosuppressants 254
Autophagy and Metabolic Stress 255
Discussion 256
References 257

17. When the Good Turns Bad: Challenges in the Targeting of Autophagy in Neurodegenerative Diseases
MELISSA NASSIF, DANilo MEDINAS, KAREN CASTILLO, CAMILA GHERARDELLI, AND CLAUDIO HETZ

Introduction 260
Briefly: The Highly Regulated Autophagy Pathway 260

18. The α-Tubulin Deacetylase HDAC6 in Aggresome Formation and Autophagy: Implications for Neurodegeneration
CHRISTIANE RICHTER-LANDSBERG

Introduction 274
Cytoskeletal Proteins as Targets for the Deacetylase Functions of HDAC6 275
The Role of HDAC6 in Aggresome Formation and Autophagy 276
HDAC6 and Neurodegeneration 279
Acknowledgments 280
References 280

Index 283