Chapter 4

Initial Triage and

Live Response:
Data Analysis

Solutions in this chapter:

m Initial Triage

m Tricks of the Trade

m User Activity

m Network Connections
m Running Processes

s Open File Handlers

M Summary

71

72

Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Introduction

OK....so now you have gathered all of the volatile information from the target
system(s), and powered them down. Now what? How do you go from a bunch of
seemingly unrelated data, to meaningful information that will help to bring you
closer to figuring out what has occurred? The information that needs to be gleaned
from the volatile data will obviously change from case to case, but the means by
which you parse out this information should remain the same.You should look for
things in roughly the same way each time, allowing the data in the case to determine
which trails you follow along the way.

Think of a tree. All trees are roughly the same in that they have roots, a trunk,
and branches. Some trees may have large, thick branches like an Oak, some may have
small brittle branches like a Pine, while others may have long drooping branches like
a Willow. The point is, no matter how much they differ, they are all trees. Now, take
this logic and apply is to forensic analysis. All of your cases will more or less be the
same in that you have some computer systems, a network, an incident, and a bad guy.
The specifics of the case will change each time, but the core of the incident will, for
the most part, remain the same.

[t 1s important to note that everybody is different, and will have a different way of
doing things, and that’s OK. Personally, I like to begin by looking at log files. Having
been a UNIX administrator for several years before moving into the security field,

I have a good feel for the way things are supposed to look. I have spoken to other
investigators who like to begin with the users, who has accounts, who logged in last,
that sort of thing. Still others like to start with the network connections, what was
being made to the box, what was coming from the box, and so forth. All of this
information can be important to the investigation, however, it’s subjective with
regards to what order the information is analyzed in. The remainder of the chapter
contains my personal outline for volatile analysis, and is meant to be a guide. Feel free
to modify it to fit your own personal style and level of comfort.

Initial Triage

Before delving into the forensics of an actual host, you need to establish the baseline
parameters of the incident. What does the customer “think” happened, do they have a
rough timeline, which systems are involved, and so forth. At this stage of the investi-
gation, it is important to simply ask questions, write down information, and try and

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter 4 73

clarity what the parameters of the incident are. From my experience, due to stress
created by the incident and the pressure placed on the individual(s) from their supe-
riors, the information provided to you during Initial Triage is sketchy at best. So it’s
important to understand that you should be the calm voice of reason from the
minute you walk through the door. Remember, the customer is relying on you to
help them, so be cool.

After the customer has told you their version of what has happened, it is important
to ask probing questions.You need to be able to fill in the gaps between what the
customer thinks happened and what really did happen, which in many cases is easier
said than done. The following are items that you will need to make sure you understand
completely so that you can conduct an effective and efficient response.

m Timeline If at all possible, you need to try and put the incident within a
specific window. This may or may not be possible based on the nature of the
incident, but it should be attempted inasmuch as the situation allows. Some
cases will enable you to narrow your focus down to a specific day, or maybe
even to specific hours within a day, while others may encompass several
years. Whatever the case may be, make sure you are as thorough as possible.
Failure to do so can seriously affect the rest of the investigation.

m Network Topography Get the lay of the land. I have not been 1n a situa-
tion yet where the customer does not at least have a high-level network
diagram of their infrastructure, so make sure you ask them for it.

m Data Flow Once you have the network diagram, make sure you understand
the data flow. Where are the ingress and egress points? What other systems
are on the same subnet? If in a Windows domain, are there domain cross
trusts which allow access to other domains? You need to understand not just
what systems are involved in the incident, but also what system could be
involved in the incident. Many customers are only focused on what their
Information Technology (IT) staft has determined to be the scope of the
incident, and don’t see the bigger picture.Your job is to widen the area of
focus to include all potentially involved systems. You can determine if they
were involved later, during log analysis.

m Security Appliances What does the customer have on their network, and
does it log. Best security practices are easy to recite, and preach, but imple-
mentation is an entirely different story. Many customers know they should

www.syngress.com

74 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

log, but don’t. They have wanted to put in an Intrusion Detection System
(IDS), or Intrusion Prevention System (IPS), but have not had the resources.
You will need to find out what they have, where it sits on the network, and
does it log. Make sure you request any logs they do have.

m Status of Effected Systems This is another one of those items in which
the customer may not really know much about. I have been involved in
several cases in which you are told one thing, for instance that a particular
system as not been rebooted; only to find out the exact opposite is true once
you arrive on-site. So even if you asked the questions prior to your arrival at
the customer location, you have to ask them again, and verify if possible.
This information can aftect the direction of your investigation.

m Business as Usual As much as possible, you need to understand what
“normal” is to the customer. When responding to an incident, you are most
likely looking at the customer infrastructure for the first time.You will have
no idea what their user ID naming convention is, what kind of traftic they
experience on an average day, which systems normally communicate with
each other, or any one of literally hundreds of potential variables that make
up their typical day. For you to perform any sort of initial analysis you need
to understand this as possible.

While you need to ask as many questions regarding this subject as possible,
understand that more questions will undoubtedly arise as the investigation progresses.
Make sure you let the customer know that you will have more questions, and you
will need a solid point of contact (POC) that is knowledgeable enough about their
technical and business processes to intelligibly answer them.

Once you have gathered all of the information you deem to be relevant (which
will most assuredly change), you can begin initial analysis. The most important thing
at this stage in the investigation is to remain neutral about the incident. Try not to
formulate any premature conclusions about the direction the data is taking you.
Simply let the data dictate the path you take.

Log Analysis

In my humble opinion, the starting point for your investigation should be an analysis
of whatever log files the customer was able to provide. This may be nothing, in
which case you might as well take some aspirin now, because a headache is rapid

www.syngress.com

Initial Triage and Live Response: Data Analysis ® Chapter 4

approaching, or it may be several terabytes of data, in which case you should probably
take the aspirin anyway, as that same headache is rapidly approaching.

Start at the beginning. This is the simple notion that in any incident, the intruder
has to get onto the customer network from somewhere, so start there. It may be a
Virtual Private Network (VPN) concentrator, it may be a satellite office, and it may
be from a specific workstation or server. Whatever the case may be, start there.

Log files on Linux systems can be wonderful things. They are highly configu-
rable, efficient, and detailed. With any luck, the system you are gathering and/or
analyzing logs from has at the very least, the default configurations for logging in
place. Linux logs are in plain text, so you will not need to use any third-party
software or utilities to perform eftective searches. Additionally, you can write custom
scripts to perform automatic actions based on the content of the logs, and the
desired output.

Linux logs are located in the /var/log directory. These are the log files both main-
tained by the system, and more than likely (and usually by default), from any third-
party software that has been installed onto the system.You will also see some files in
the directory which end in a number, as can be seen in Figure 4.1.

Figure 4.1 Files Ending in Numbers

Ble Edt Mew Tewrnal Tabs Help
root@Forensicl: /var/logs 1s

acpid apport .log.4.g97 bootstrap.log debug. 8 dmesg.4.q2 kern.log mail .warn scrolTkeeper.log. 1 udev wudialcom
acpid.1.qz apport .log. 5.5z btap s dpkg.log kern.log. 8 serollkeeper.log.® unal lended -upgrades Xorg.8.loe
kg apt btmp.1 dpkg.leg. 1 kerr 1 syslog user.log Xorg.e.loe

r auth.leg dpkyg . leg. 2.9z kerm ’ sysloo.@ user . log. 8
auth.leg. @ dasmon. log dpleg . leg. 3.qz kern.log.3.q9z z syslog.1.gz e 3
daeman.log.8 dme faillog lastlog messages. 3.g7 syslog.2.q7
= fontcantig.log lpr.log syslog.3.q7
-0z sck wail.err pycentral.log syslog.4.0z
g 9d rail.info anb; syslog.5.gz
aller nail.log scrallkesper.log syslog.f.ge

acpid

APPATEO auth.leq.1.97
apport. Log auth.Loq.2.q7
appart.leg.l auth.leg.3.9z
apport.log.2.gz bittorrent daemon. Log. 3.9z
apporl.log.3.ge boot debug
root@Forensicl: /var/log# ||

These are called rotated archives. Depending on what level of granularity the
logging has been set to, logs can get large and cumbersome. Linux provides a com-
mand called “logrotate,” which does exactly what you would think it does: it rotates
the log files by appending a number to the end of the file. For example, in Figure 4.1
you can see “syslog” without a numerical suffix. That is the current log. The first log
in the archive is the “syslog.0” file, and is the previously active log file. Next you will
see “syslogl.gz” through “syslog.6.gz”. These are the remainder of the archived log
files in a gzipped format. When “logrotate” runs, usually daily (can be found by
default in /etc/cron.daily), it takes the current file, appends a “.0” to the end of the
filename, and starts logging again in the standard log file, in this example, “syslog.”

75

www.syngress.com

76

Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

The other log files are then increased in numerical value by 1, with the oldest log
being deleted. All of this information is configurable in the /etc/logrotate.conf file.
The system administrator at the customer location should be able to tell you what
the log gathering parameters are for his servers.

To begin searching through the logfiles, you can use the native Linux commands,
or any text tool. Below are some useful commands:

zgrep
Zgrep invokes grep on compressed or gzipped files.

zgrep <search parameter> *

This will search all compressed files in the current working directory for the
<search_parameter>.

Tail

Tail will display the last output of the file as denoted by the next argument. For example,
“tail -100 <filename>"" will display the last 100 lines of the file. Additionally, using
the —f switch will display a log file as it gathers information in real time.

tail -f /var/log/messages

This will display the contents of /var/log/messages as new output occurs.

More

More works the same as the MS DOS version of the command, by simply sending
the contents of the specified file to stdout.

more <filename>

This will display the contents of the <filename>, stopping output at the bottom
of the screen with the word “—More—(x%).” This indicates that you are currently
looking (or have looked at) x% of the total file. You can press the enter key to scroll
down by one line, or the space bar to scroll down by one page.To scroll backwards
by one page, simply press the letter “b.” Additionally, you can search thorough the file
with the “/” key followed by the <search_parameter>. If multiple occurrences of the

(13 b

<search_parameter> are found, simply press the “n” key to skip to the next entry,

www.syngress.com

Initial Triage and Live Response: Data Analysis ® Chapter 4

while the letter “p” will take you to the previous entry. The letter “q” allows you to
quit the current view and returns you to the command prompt.

Less

Less is the opposite of more. It allows you to perform the same functions as the
“more” command, but with much more control, like adding the ability to move both
backwards and forwards in the file. It also loads much faster than more, since it does
not read the entire file before opening it up.

less <filename>

This will display the contents of the <filename>.You can scroll backward with
the “b” key, and forward with the “d” key. Just like “more,” you can press the “/” key
followed by a <search_parameter> to conduct a string search; “n” will take you to

(13 2

the next occurrence of the hit, “p” will take you to the previous one.

Keyword Searches

Keyword searches are a quick and easy way to help you identify points of interest on
the targeted machines. These can either be performed on the live system, provided
that the volatile information has already been gathered and the forensic imaging has
already taken place, or post mortem in a laboratory environment. The important
thing to remember 1s that keyword searches operate under the assumption that the
bad guys have left the original names for whatever tools they have used, in place on
the system. You obviously are not going to be able to guess if the names of any files
that have been changed, so just keep it in the back of your mind during the data
analysis and let the data guide you.

To perform our keyword searches, we are going to stick with the resident utilities
found on the Linux operating system:

m strings
m grep
m less

For our example, I have gathered the contents of /proc/kore from my Ubuntu 7.10
(Gutsy) machine.

77

www.syngress.com

78 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

NorTe

The kcore is an extremely useful file to capture and analyze from a compro-
mised Linux machine. Like the rest of the information found in /proc, kcore
are virtual files created by the kernel to provide the user with valuable
information about the running system, and is the exact size as available
memory. Think of the kcore as the physical, tangible files (sort of) that
directly correlate to what the system is doing in memory (but remember, they
are not “real,” they are virtual). If you try to “cat” kcore, the system will
display a bunch of seemingly useless garble with some recognizable charac-
ters thrown in every so often. For the purposes of forensic analysis, make
sure to use the “strings” command, which will only display printable
characters.

strings /proc/kcore —t d > /tmp /kcore_outfile

In this particular command, I have chosen to use the “~t” and “d” switches. The “~t”
option will print the offset at the front of each line, while the “d” option will put
those offset numbers in decimal format (called the radix).You can get the full listing
of options available using this (and any other command for that matter) from the
man page.

Now that I have my strings output from kcore, I can perform my keyword
searches to see if any nefarious processes are running on the system. In Figure 4.2,
I grep’ed for my username, “cepogue” and piped the output through more. The result
is every occurrence of my username that is currently loaded into memory. Since this
is my machine, obviously there are going to be quite a large number of hits from my
search. Hopefully, on the system that is being investigated, this will not be the case.

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter4 79

Figure 4.2 Greg'ed Username

o Applications places system @(21@ ®d chris pogue €5 @ ManMar 3. 6:03aM [&

- TaolEToreIET: I, PP
Ble Edit yiew Termunal Tobs Help

261082843 /home/cepogue 1~
264805778 261882843 /home/cepogue

269432651 geonld-cepogue

269432755 Tracker-cepogue. 5291

269432791 mapping-cepogue

269432855 mapping- cepogue

2TOR34TIA 264805778 261882843 /home/cepogque

278122949 GTK RC FILESs/etc/gtk/sgtkrc: /home/cepogue/ . gtkre-1.2-gnome2

278123171 LOGNAME=cepogue

278123204 USERNAME=Cepogue

278123481 XAUTHORITY=/home/cepoque/.Xautharity

283198398 /cepogue IBM 155

284156158 /cepogue

285828557 mapping- cepogue

290849487 f1le:%2FR2FR2Fhomes2FcepoquetF. Trash.ml
293319932 /cepogue

293320278 cepogue_tracker lock

319422496 cepogue

219456716 mapping- cepogue-

319761624 cepogue IBM ISS

A26873128 adm:x:4:cepogue, xfers

3208873241 dialout:x:20:cepogue,xfers
326873295 cdrom: haldaeman, cepogue, xfers
320873330 Tloppy thaldaemon, cepogue, xfers
326873393 audio:x:29:cepogue, xfers

326873418 dip:x:30:cepogue, xiers

326873551 video:x:dd:cepague

328873581 plugdev:x:48:haldaenon, cepogue, xlers
3266873718 scanner:x:164:hplip.cepogue, xfers
326873790 \padmin:x:188:cepogue

326873838 admin:x:118:cepogue

326873910 netdev:x:113:cepogue

3268TIVAR powerd 117:haldasnon, cepogue
J26BT4BET cepogue:x:1B88:

326BBE6OU cepogue:x:1888:1080:Chris Pogue, ., :/home/cepogue: /bin/bash
327119613 cepogue:§15CA2qulD5$5ndGovSFAAOKWS YatedTTr. 1 13832:6:95999:7::;
327122986 adm:*::cepogue, xfers

327123679 dialou cepoque, xfers

327123127 cdrom: ldaemon, cepogue, xfers
aldaeman, cepoque, xfers
pogue, xfers

epogue, xtars

pogue

haldasman, cepoque, xfers
thplip, cepogue, xfers

327123353 videa:
327123379 plugde
327123485 scanner:!:

) (@ root@Forensicli tmp | a s

In addition to keywords provided to you by the customer, it is a good idea to
keep your own personal keyword list, which is updated at the conclusion of each
case. In my experience, I learn something new with each case, so keeping a dynamic
keyword list helps me to not only remember what I have found in the past (and need
to research further), but it helps me to find it again in future cases. Here are some of
the keywords that I search for on a regular basis.

File and Directory Names

m grep —¢ (the “—e” is used here for pattern matching) “\/proc/” —e “\/bin” —¢
“N/bin\/.*?sh” kcore_strings.

m grep — “ftp” —e “root” kcore_strings
13 b :
m grep —e “rm —1” kcore_strings

m grep —e “.tgz” kcore_strings

www.syngress.com

80 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis
IP Addresses and Domain Names
m grep —e “[0-9\+\.[O-9\+\.[0-9]\+\.[0-9]\+" kcore_strings
m grep —e “\.pI\” kcore strings
Tool Keywords

m msf (Metasploit Framework)

m select
m insert
m dump
m update
m nmap
m nessus
m nikto

m wireshark

m tcpdump

m kismet

m airsnarf

m paros

m hping?

m ettercap

m aircrack

m aircrack-ng
m airsnort

m nc (netcat)

Now, let’s suppose you find something of interest, and you want to probe into it a
bit deeper. In Figure 4.3, you will see the results of me searching kcore_strings for
the keyword, “root@Forensic1” (my localhost root account).

www.syngress.com

Initial Triage and Live Response: Data Analysis ® Chapter 4 81

Figure 4.3 Search Results

«3 Applications Places System @@ Wl chris Pogue 5 @ Manmar 3. 657 am (&
Lt i il b iy ol
Ble Edt Yiew Terrminal Tobs Help

519367337]@; root@Forensicl: /proc ~
519367362 root@Forensicl:/proc# 1s koore

519367420 |8; root@Forensicl: /proc

519367445 root@Forensicl:/proc# strings -r

519368636 |6; root@Forensicl: /proc

519368661 root@Forensicl:/proc# strings -t -d kcore >
642178788 root@Fforensicl:-#

B4656E268 root@Forensicl: fproc

656462456 root@Forensicl: fproc

670689616 root@Forensicl: fproc

675580916 |8; root@Forensicl: /proc

675580941 root@Forensicl:/proc# ized and loaded sections of object files; for other types of files, it
6B40B6ABE root@Forensicl: fproc

688937838 |6; root@Forensicl: -

688937919 root@Forensicl:-# U

BB9337208 root@Forensicl: fproc

689337248 root@Forensicl: fproc

BB9337272 root@Forensicl: fproc

689337304 roat@Forensicl: /proc

B9BB44B96 root@Forensicl: /proc

6908644128 root@Forensicl: /proc

893004360 root@Forensicl: /fproc

693885464 root@Forensicl: fproc

TOSGSE2EE root@Forensicl: /proc

787791864 root@Forensicl: fproc

TE2145840 root@Forensicl: fproc

772663424 root@Forensicl: fproc

205287764 root@Forensicl:/prock# strings -t -d keore > /tmp/kcore strings
885279752 root@Forensicl:/proc# strings -t d kcore > ftmp/kcore_strings
813872896 root@forensicl: /proc

822466968 root@Forensicl: /proc

BIEOGEESE root@Forensicl: /proca

B260GAEEE root@Forensicl: /procsB

827852944 root@Forensicl: /proc

841968352 root@Forensicl: fproc

B470376B0 root@forensicl: fproc

BE5367264 root@Forensicl: fproc

BE53B4BB8 root@forensicl: fproc

888216768 root@Forensicl: fproc

895912488 root@Forensicl: fproc

9266B6936 root@Forensicl: fproca

9266B6968 root@Forensicl: /procsB

926744640 root@Forensicl: /proca

926744672 root@Forensicl: /procsB

926745424 root@Forensicl: fproc

root@Forensicl: /tmp#

2 (@ root@Forenscli tmp | 1]

As you can see, the search returned anything from my strings output from running
memory that matched my search criteria, “root@Forensic1.” Now let’s say that you
think that offset 805277704 looks interesting. The next step would be to open
kcore_strings with a text editor. In this example, I use the “less” command.

less kcore strings

This will open up the kcore_strings file in a searchable format

/<search argument>

This will search through the file for an occurrence of the <search_argument>.

In my example, I used the following search: /805277704 (This is quite a few
lines up in the kore_strings file, so this may take a few seconds to return with your
results.

With any luck, we might be able to find some of the commands typed in during
the time that this offset was recorded into memory. In Figure 4.4, you will see that I
fat-fingered my search by putting in a “~” on my second argument. You will also see
that I was playing with some scripting using “xargs,” as well as installing The Sleuth Kit.

www.syngress.com

82

Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Figure 4.4 Fat Fingered Search

43 applications places system @)@ i Chris Pogue & Monmar 3. siseam [0

a L R il (=P
Ble Edt Mew Terminal Tobs Help
root@Forensicl: /proc# strings -t -d keore > /tmp/keore_strings
885279752 root@Forensicl:/proc# strings -t d kcore > jtmp/kcore strings
005281800 find fhome -name .bash_history -exec strings {}\; | grep whoami | xargs strings -f
805281926 find fhome -name .bash_history -exec strings {} % ; | grep whoami | xargs strings -f
BO5ZE2000 #1204318622
BA5282152 #1204318822
8085282184 find fhome -name .bash_history | xargs -fg
885282248 find fhome -name .bash_history | xargs -f
BO5282344 #1204318822
BA52E2488 #120431BB22

005282440 find fhome -name .bash_history -exec strings {} \; | grep whoami
885282568 find fhome -name .bash history |xargs strings -f | gréep whoami
BA52B2TIR #1204118822

BAS2B2T92 #120431BB22

BA52B2824 apt-get install sluethkit

905282688 apt-get install sleuthkit

BASIBIGR4 #1204118B822

BA5283048 cat version

BO52B3080 #1204318822

BO5263144 version

BA5ZBI1T6 #120431BB22

BO52B3240 uptine

BA52B3277 #1204318822

805283336 cat uptime

BO52B3368 #1204318822

805283432 od fproc

BA57B3464 #120431B822

8a5288528 cat version

BA52B1I560 #1204318822

BO5283624 cat uptime

BO52B3656 #1204318822

BE52B3720 cat version uptime meminfo filesystems
BO52B3I784 #1204318822

BES2E3B48 clear

HOS2B3000 #1204318822

BOSZE3944 #1204318822

805283976 cat version uptime meminfo filesystems cpuinfo
BASZB4072 #1204318822

805284136 shsn

BO5284168 #1204318822

805284232 chsn

BO3284264 #1204318822

BA52B4328 #1204318822

805284392 which compile

BA52B4424 #1204318822

| [@ root@rorenticl: fmp a |

So, as you can see, this is a simple yet powerful way to perform string searches on
a live system or booted image. Remember, pages within the virtual memory, physical
memory, and swap are overwritten in an unorganized manner. This means that your
attempts may hit a dead end here, or they may be invalid. Use the information
gleaned from this process in conjunction with other information acquired during the
course of the investigation.

Tricks of the Trade

The operating system is not going to ask you to “be more specific” in your search
requests. Put simply, you are going to get what you tell it to find. So, you have to
know how to properly stack your search arguments to make your keyword searches
as efficient and effective as possible.

In this example, I am again, going to use my Ubuntu 7.10 (Gutsy) machine.
In Figure 4.5, you can see that I performed a keyword search against kcore_strings
for the term, “nc”.

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter 4 83

Figure 4.5 Keyword Search

3 Applications Places system @21 @ wd chris Pogue © @ Monmar 3. 710 aM [&

Ele Edit Mew Terminal Tops Help
3647016 <2-More than %d memory regicns, truncaling

364TELT free:wlu slab:ilu mapped:%lu pagetables:%lu bounce:%lu

3648232 /build/buildd/1inux-source-2.6.22-2.6.22/mm/truncate.c

3649228 Jbuildsbuildd/linux-source-2,6.22-2.6.22/includes Linux/swapops.h
3649352 <d>allocation failed: out of vmalloc space - use vmalloc=csize> to increase sirze.
3649524 /build/buildd/1inux-source-2.6.22-2.6.22/mm/bounce. ¢

649580 isa bounce pool size: %d pages

3649612 highmen bounce pool size: %d pages

3651264 fbuild/buildd/linux-source-2.6.22-2.6.22/include/Linux/bit_spinlock.h
3652731 nr_bounce

3654520 /build/buildd/linux-source-2.6.22-2.6.22/include/ Linux/quetaops.h
3655020 «3»kill fasync: bad magic number in fasync struct!

3655124 <I>lacks delete lock: fasync == 4p I
3655472 /build/buildd/linux-source-2.6.22-2.6.22/ include/Linux/module. h
I6S6TZE Sbulld/bulldd/1inux-source-2.6.22-2.6.22/include/Linux/bio. h
3857800 Referenced: %8lu kB

3659276 Bounce: “8lu kB

3861652 VBLK group %d is incomplete (@xwezx).

3663153 Emergency Remount complete

36683376 fasync cache

36640803 |, sync

3884009 dirsync

3664181 Emergency Sync complete

3664530 max user inslances

3665878 syncs

3666344 Truncating string % -> %d.

3669384 <4>SELinux: duplicate or incompatible mount options

3670800 /build/buildd/linux-source-2.6.22-2.6.22/include/Linux/fs.h
3671168 <3»security: ebitmap: truncated map

3671586 <3=>security: aviab: Lruncated entry

3671672 security: avtab: truncated source type

3671712 security: aviab: truncated target type

3671752 security: avtab: truncated target class

3671812 security: aviab: truncated entry

3671948 <3=security: avtab: truncated table

3672180 <I=security: mls: truncated level

3672224 <3esecurity: mls: truncated range

3672492 <I»security: context truncated

3673060 <3wsecurity: truncated policydb string identifier

3673680 <Insecurity: class %d is incorrect, found %s but should be %s
3673944 «<3wsecurity: permission %5 in ¢lass %35 has incorrect value
3674816 <I>security: the definition of a class 15 incorrect

3680175 fifo ewpire sync

3680192 fifa expire async

3680242 slice sync

Ll
Qi

A (@ root@Forensiclitmp |

As you can see, the search for the term “nc” yielded every entry in which the
letters “n” and “c” appeared together. This is obviously not a very clean search,
so I will have to refine my parameters to give me something a bit more useable.
Using what [know about netcat, it can either be used to send or receive infor-
mation. The command structure to send a file is:

nc <host.example.com> (or IP address) <port> < infile

The command structure to receive a file is:
nc -1 (for #*l*isten) <port> > outfile

Based on this information, I can refine my search to see if the host I am investi-
gating has been used to either send or receive a file using netcat. In Figure 4.6, you

can see that my search argument did not yield any hits, so I can safely assume that
the host did not receive any files using “nc —1.”

www.syngress.com

84 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Figure 4.6 No Hits from Search

3 Applications places system @ (2@ 4 Chris Pogue €5 Man Mar 3. 7:20 M [

Ble Edit View Terminal Tobs Help
364TBLT free:Slu slabi%lu mapped:Sle pagetables:%lu bounce:Slu =
3648232 /build/buildd/1inux-source-2.6,22-2.6.22/mm/truncate. c

3645228 /build/busldd/Linux-source-2.6.22-2.6.22/ include/Linux/ swapops . h

3649352 <dsallocation failed: out of wmalloc space - use vmalloc=esizes to increase size.
3649524 /build/buildd/linux-source-2.6.22-2.6.22 /an/bounce.c

3649580 ica bounce pool size: %d pages

3649612 highmen bounce pool size: %d pages

3651264 /build/buildd/linux-source-2.6.22-2.6.22/include/1inux/bit spinlock.h

3652731 nr_baunce

3654520 /build/buildd/1inux-source-2.6.22-2.6.22/include/1inux/quotaops.h

3655020 <I>kill_fasync: bad magic number in fasync struct!

3655124 «3=locks delete lock: fasync ==

3655472 /bulld/buildd/Linux-source-2.6.22-2. _7?;’1!\:1"&!.”!nux,{lﬁllll!.hl

2.6
3656728 /build/buildd/linux-source-2.6.22-2.6.22/include/Linux/bio.h
3657660 Referenced: %alu kB
38539276 Bounce: %8lu kB

3661052 VBLK group %d 15 incomplete (8x%02x).

3663153 Emergency Remount complete

3663376 fasync_cache

3864003 , sync

664009 ,dirsync

3664101 Emergency Sync complete

3664538 max_user_instances

38650878 syncs

3666344 Truncating string %d -> %d.

3669384 <4»SELinux: duplicate or incompatible mount oplions
3676868 /build/buildd/linux-source-2.6.22-2.6.22/include/Vinux/fs. h
3671088 =3»security: ebilmap: truncated map

3671596 <3=security: avtab: truncated entry

3671672 security: aviab: truncated scurce type

3671712 security: aviab: truncated target type

3671752 security: aviab: truncated target class

3671912 security: avtab: truncated entry

3671948 <3asecurily: aviab: truncated lable

3672108 <3wsecurity: mls: truncated level

3672224 mls: truncated range

3672492 context truncated

3673068 <I>security: truncated policydb string identifier

3673680 «3wsecurity: class %d is incorrect, found %5 but should be %s
3673944 <I»gecurity: permission %5 in class % has incorrect value
3674816 <3»security: the definition of a class is incorrect
3680175 tita expire sync

3680192 fifo ewpire async

36BAZ42 slice sync

root@Forensicl: /tap# grep -¢ "nc -1° kcore strings | more
root@Forensicl: ftm

B [root@Forensicl: tmp

Next, as seen in Figure 4.7, I searched to see if the host had been used to send a
file with netcat.

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter 4 85

Figure 4.7 New Search

o pplications Places system @21@ i chris Pogue 5 @ Manmar 3. 7:20 M [

LERT AT R T =T

Fle Edt view Terrminal Tabs Help

36459332 <4=allocation failed: out of vmalloc space - use vmalloc=<size> Lo incresse size. =
3649524 /build/buildd/1inux-source-2.6.22-2.6.22/mm/bounce. ¢

J645580 isa bounce pool size: %d pages

3649612 highmen bounce pool cize: %d pages

3651264 /build/buildd/1inux-source-2.6.22-2.6.22/include/Linux/bit_spinlock.h
3652731 nr_bounce

3654528 /build/buildd/linux-source-2.6.22-2.6.22/include/Linux/quotaops.h
3655020 «3=kill fasync: bad magic number in fasync struct!

3655124 <3»locks delete lock: fasync == %p

3655472 /build/buildd/linux-source-2.6.22-2.6.22/ include/1inux/module. h
3656728 /bulld/builed/linux-source-2.6.22-2.6.22/include/Linux/ble. h
3657800 Referenced: *8lu kB

3659276 Bounce: “Blu kB 1
3661652 VBLE group %d is incomplete (Bx%82x).

3663153 Emergency Remount complete

36683376 fasync cache

3664003 |, syne

3664009 ,dirsync

664101 Emergency Sync complete

3664530 max user instances

3665678 syncs

3886344 Truncating string %d -» %d,

3669384 <4>SELinux: duplicate or incompatible mount options

3870860 /build/buildd/linux-source-2.6.22-2.6.22/ include/Linux/fs. h
3671168 <3security: ebitmap: truncated map

3671506 <3»security: aviab: truncated entry

3671672 security: avtab: truncated source type

3671712 security: aviab: truncated target type

3671752 security: avtab: truncated target class

3671512 security: avtab: truncated entry

3671948 <3»security: avtab: truncated table

3672100 <d>security: mls: truncated level

3672214 «<3ssécurity: mls: tTruncated range

3672452 <3asecurily: context Lruncaled

367IN60 <3Issecurity: truncated policydb string identifier

A6TIEBO <I=security: class %d is incorrect, found %s but should be %s
3673944 «Iwsecurity: permission %5 in class %5 has incorrect value
J6T4B16 <I»security: the definition of a class is incorrect

3680175 fifo ewpire sync

3680192 fifo expire async

3680242 slice sync

root@Forensicl: /tap# grep -& "nc -1° kcore strings | more
root@Forensicl: /tap# grep -¢ "nc [8-9]4+\." kcore strings | more
411918483 * Image 8.1 * Imapmail 8.1 * Imonc 8.6
611115945 Example: HorizSync 31.5 36.5

root@Forensicl:/tap#

2| | @ root@Forensicl: tmp |

So while my search did return a hit with, “nc ##.##,” it was obviously not an
Internet Protocol (IP) address. So, now I can also safely assume that the host had not
been used to send a file using netcat.

Keyword searching is as much an art as it is a science. You need to develop an
understanding of how the system is supposed to work, where things are supposed to
be stored, and how they are supposed to look before you will effectively be able to
spot anomalies. Build your own list of keywords as you work cases for items you have
found, as you will likely see them again. Additionally, it is always a good idea to use
some kind of virtualization utility or a test box to perform fingerprinting. By doing
this, you can see where the default locations are for many of the utilities commonly
used by hackers. This subject will actually be covered in depth in Chapter 5:

“The Hacking Underground.”

Again, knowing what the standard operating parameters are is critical! I cannot

stress that point enough!

www.syngress.com

86 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

User Activity
Shell History

Knowing who has done what is always of the utmost concern in any investigation.
Fortunately for us, by default, Linux keeps a trail of user activity in the shell history,
located in the /home/<user> directory. Remember, the shell history is only a record-
ing of one side of the conversation. It does not show you how the system responded
to the particular command. So while gathering information about what was typed in
at the command line is a good information gathering technique, like anything else, it
should be used in conjunction with other data retrieved from the investigation.

In my examples, I am again using an Ubuntu 7.10 (Gutsy) distribution, which
uses the BASH shell by default. To find the history files that exist on my system,
I simply type:

locate bash history
Understand that this command will only give you the .bash_history files. There are

other shells which will create other history files. The most popular shells store their
history files in the following locations with the /home/<user> directory:

m BASH .bash_history
m C-Shell history.csh
m Korn .sh_history

m POSIX .sh_history
m Z-Shell .history

Again, by default, most Linux variants maintain a 500-line command history.
To view the current command history of a system, type:

echo S$SHISTSIZE

Like anything else in Linux, this environment variable is configurable within the
.profile of the individual user. If you find that the HISTSIZE has been modified from
the default value, take note of it, and follow up with the customer’s system adminis-
trator to find out if this was a configuration change on their part, or something that
was done maliciously by an intruder (especially if the value has been set to zero).

Included on your tools disk are two scripts I have written to make parsing
through user shell history files a bit easier. The first script 1s called “history_search.sh.”

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter 4 87

It takes the commands from all of the user history files on the local host, regardless of
which shell has been used, removes the duplicate entries, and puts them into a single
file in the current working directory called “outfile”. You can use this file to review
all of the commands used on the target host and determine if any of them requires
further investigation. For example, if a command is found such as, “mst™, indicating
that the Metasploit Framework binary was invoked from the command line, you can
then use the second script, “user_driller.sh” to find out which user(s) typed in that
specific command. This script will create a directory called driller in a user-specitied
location; however, the default i1s the current working directory.

NoTE

One of the limitations of the shell history files is that other than the Media
Access Control (MAC) time, there are no timestamps within the file itself. So
while knowing what was typed in can be useful for formulating an idea of
what may have happened on the host, other correlative measures will have to
be taken to determine when those specific actions took place. Also tying a
username to a command, or series commands only shows which username
was used, not necessarily which user was actually using that account. A good
hacker will most likely use an existing user account to perform his nefarious
tasks. This means that log file correlations will be of the utmost importance
for you to be able to piece together the different aspects of the investigation.

Logged on Users

When analyzing volatile data it is import to know which users are currently logged
onto a system. Understand that most intruders are not so dumb as to create a user ID
called, “hacker.” They will more than likely use an existing user ID to conduct their
illicit activities. Just like with shell history, additional chronological correlations will
have to be made to determine if the activities were part of normal business opera-
tions, or if they were the work of an intruder.

The output from the “who” and “w” commands are shown below in Figure 4.8.
The results from the “w” may require a bit more information to fully comprehend

what the user is looking at.

www.syngress.com

88 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Figure 4.8 Output from “who"” and “w"

£ pplications Places system @21@ i chris Pogue & MonMar 3. 10:49 am £
- BT O e E L IO LR o = PE
Ble Edt “iew Terminal Tobs Help
root@Forensicl: fhome/cepogued who =
cepogue tty7 2098-82-29 14:55 (:8)
cepogue pts/@ 2008-02-29 13:00 (:0.0)
root@fForensicl: fhome/cepogques w
18:49:16 up 2 days, 19:54, 2 users, load average: 8.81, 0.088, 6.04
USER Ty FROM LOGING IDLE JOPU PCPU WHAT
cepogue tiy7 8 Frild 1.00s 5:21m 0.19s x-session-mansger
cepogue Prs/e 0.0 Frils 1.885 ©.395 24.795 gnome-terminal

root@Forensicl: fhome/cepaquas

o | @ root@®Forensicl: fho., a

The header is pretty self explanatory. The fields shown are the current time, how
long the system has been running, how many users are currently logged on, and the
system load averages. However, starting at the usernames, let’s go into a bit more
depth on what each of the items listed actually mean.

m User Username

m TTY Teletype In the old days of computing, terminals were keyboards that
were attached directly to printers called “teletypes.” The output from com-
mands issued to the system were read from the teletype. Where tty is either
zero or a positive integer signifies a login from the console. Where tty is
either pts or ttyp#, it signifies a login over the network.

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter 4 89

m From This field shows where the user is logging in. In Figure 4.8, the “:0”
and “:0.0” indicates that I am logged in from the console. If, for example,
[was Secure Shelled (SSH'd) into the localhost from another box on the
network, then that IP address or fully qualified domain name (FQDN)
would appear in place of the “0.0.”

m Login@ This is pretty self explanatory. It shows the time of the last login.

m Idle This shows how long it has been since the last user activity. This infor-
mation can be of specific note if you see users with long idle times.

m JCPU The JCPU time is the time used by all processes attached to the tty.
[t does not include past background jobs, but does include currently running

background jobs.

m PCPU The PCPU time is the time used by the current process, named in
the “what” field.

m What The What is the process that the user is currently running,.

Network Connections

Recall from the introduction, I referred to the lack of information sometimes being
called “negative evidence.” While the data necessary to prove negative evidence is
mainly found in the customer’s network logs, the local network connections can
prove to be equally as useful.

By running the netstat command with the “—an” and “—rn” switches, you can see
which connections are being made to and from the host as well as on which port is
being used and the state of that connection (either LISTEN, ESTABLISHED, or
CLOSE_WAIT).

www.syngress.com

90 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Figure 4.9 Established Outbound Connections

a P Favnrnel e TR
Blo Ede \ew Jerminal Tahs pelp

root@Forensici: /@ netstat -am

Active Internet conmections (servers and established)

Proto Recv-Q Send-0 Local Address Foreign Address State

tp L] B 127.8.0.1:631 0.9.0.9:* LISTEN

top L] @ 192.168.10.118:33428 64.12.201,38: 5190 ESTABLISHED

tep L] @ 192.168.10.118:50577 207.46.111.47:1863 ESTABLISHED

wp 1 @ 192.168.10.118:42118 212.58.226.73:89 CLOSE WAIT

wp L] @ 192.168.10.118:57359 216.155.193.174:505¢ ESTABLISHED

wp L] @ 192.168.10.118:58929 216.239.51.125: 5222 ESTABLISHED

wp L] @ 192.168.10.118: 41844 20%.188.210.131:519¢ ESTABLISHED

wp L] @ 192.168.10,118:33739 64.233.167.104:80 ESTABLISHED

top L] @ 192.168.10.118: 36598 205.168.153.3:5190 ESTABLISHED

tep] B 192.168.10,118:48750 285,188.8,184:5190 ESTABLISHED

tep ® 117 192.188.10.118:56377 285,185.13.16:3190 ESTABLISHED

udp] 8 8.0.9.8:32778 5.9.0.8:%

udp] 8 9.0.8.0:3353 8.9.0.8:%

Active UNIX domain sockets (servers amd established)

Proto Refcnt Flags Type state I-Node Path

unix 18 11 DGRAM 15881 /dev/log

unix 2 [Acc | STREAM LISTENING 17843 /tmp/.X11-unix/Xe

unix 2 [acc | STREAM LISTENING 18112 /tap/keyring-u32dsI/socket

unix 2 [acc] STREAM LISTENING 16061 @/tep/dbus - BuB3RTpSUX

wnix 2 [acc | STREAM LISTENING 18193 /tmp/ssh.|RGP) J5687/agent, 5607

unix 2 [acc) STREAM LISTENING 18209 /tmp/orbit-cepoguesling-188c-0-858a2ede3fbTc
unix 2 [acc | STREAM LISTENING 18219 /tmpforbit-cepoguesling-15¢7-0-3eTdd4b541661
unix 2 [acc | STREAM LISTENING 18437 /tmp/. ICE-unix/5687

unix 2 [acc | STREAM LISTENING 18471 /tmpforbit-cepoguesling.1612-8-T1b52a2047926
unix 2 [acc] STREAM LISTENING 18528 /tmpforbit-cepogue/ling-161d-8-71b52azbeatsn
unix 2 [acc | STREAM LISTENING 18548 /tmpforbit-cepoguesling-161a-0-71052a202a81
unix 2 [acc] STREAM LISTENING 18634 /tmp/orbit-cepoguesling-161c-0-53b1162b814a2
unix 2 [acc] STREAM LISTENING 18654 /tmpforbit-cepogue/ling-1618-9-5243a15¢as12d
unix 2 [acc) STREAM LISTENING 18663 /tap/orbit-cepoguesling-1634-0-1300280853cc5
unix 2 [acc | STREAM LISTENING 18714 jtmpforbit-cepoguesiing-1639.0-5412ad0235220
unix 2 [acc | STREAM LISTENING 18756 /tmpforbit-cepoguesling-1641-0-2Tad540450852
unix 2 [acc] STREAM LISTENING 18856 /tmp/orbit-cepoguesling-163b-0-5515a46085008
unix 2 [acc] STREAM LISTENING 18867 /tmp/orbit-cepoguesling-164c-0-4TeeaSacsanie
unix 2 [acc] STREAM LISTENING 18871 /tmp/orbit-cepoguesling.1644-0-5515a3608845¢
unix 2 1 DGRAM 8571 f/con/ubuntu /upstart

unix 3 atc 1 STREAM LESTENING 18034 Jtmpforbit-cepoguesling-1633-0- 341226053003
unix 2 acc 1 STREAM LISTENING 18987 /tmp/orbit-cepogue/linc-184b-0-THadfs16e6te]
unix 2 acc 1 STREAM LISTENING 19138 /tmp/orbit-cepogues/ling-187c-0-62690120451c2
unix 2 A | STREAM LISTENING 19144 /tmp/mapping-cepogue

unix 2 acc 1 STREAM LISTENING 17648 @/org/bluez/andio

unix 2 acc 1 STREAM LISTENING 20400 /tmp/orbit-cepogueslinc-16ab-0.66112425da00b
unix 2 acc 1 STREAM LISTENIMG 20408 /tmp/orbit-cepogue/linc-18af-0.88712425d6895
unix 2 acc | STREAM LISTENING 20466 tmp/orbit-cepoguesling-16ad-0-231db20dd7d31
unix 2 atc 1 STREAM LISTENING 26541 /tmp/orbit-cepogueslinc-16d5-0-76a7d6e856cs
unix 2 acc | STREAM LISTENING 20898 /tsp/orbit-cepogue/linc-1768-0-41a0888379432
unix 2 acc | STREAM LISTENING 17596 @/var/run/dbus-TIEfKWING]

unix 2 acc | STREAM LISTENING 15718 pvar/run/acpid. socket

unix 2 acc | STREAM LISTENING 163105 /tap/orbit-cepoguesling-950-0-24831ae548835
unix 2 acc | STREAM LISTENING 305768 stap/orbit-cepoguesling-B8a-0-Tac20632228e
unix 2 acc | STREAM LISTENING 18972 Jvar/run/dbus/systen bus socket

unix 2 acc | STREAM LISTENING 17515 Jvar/run/avahi-doeson, socket

unix 2 AC] STREAM LISTENING 18451 @/tep/dbus- L) 3EYZBCDK

The results of the netstat “—an” command are separated into two sections, Active
Connections and Domain Sockets. The Active Connections are separated into six
columns, however, for our purposes we are only interested in four, Proto (Protocol),
Local Address, Foreign Address, and State. As you can see from Figure 4.9, I have
several established outbound connections to various destinations on various ports.
Obviously the connections on port 80 are Web, while ports 5190, 1863, 5050, and
5222 are instant messaging via Pidgin. I was able to confirm this by running ARIN
WHOIS queries against the IP addresses in the Foreign Address column.

In your case, this information will be difterent, but will show you the same type
of information. Knowing the connection status of your machine is of critical impor-
tance to your case, and can provide key insight into specifics of the incident.

The second section, Active Unix Domain Sockets, has the following breakdown:

m Proto Protocol (usually UNIX) used
m RefCnt Reference count (i.e., attached processes via this socket).

m Flags Flags displayed is SO_ACCEPTON (displayed as ACC),
SO_WAITDATA (W), or SO_NOSPACE (N). SO_ACCECPTON is used

www.syngress.com

Initial Triage and Live Response: Data Analysis ® Chapter 4 91

on unconnected sockets if their corresponding processes are waiting for a
connect request. The other flags are not of normal interest.

m Type Types of socket access:
m DGRAM Used in Datagram (connectionless) mode
s STREAM Stream (connection) socket
s RAW Raw socket
s RDM Reliably-delivered messages
m SEQPACKET Sequential packet socket
m PACKET RAW Interface access socket

m State:

s FREE Not allocated

m LISTENING Listening for a connection request. Those sockets are only
displayed if the -a switch is set.

s CONNECTING About to establish a connection.
s CONNECTED Connected.
s DISCONNECTING Disconnecting.

m (empty) Not connected to another socket.

The last two columns are [-Node and Path, which identify the process attached
to the socket. Since there are likely to be a whole slew of entries, and you will likely
have no clue which ones are normal and which are not, be sure to get with the
customer’s system and network administrators to help you establish a baseline of
“normal” operating parameters. Additionally, simply using an Internet search engine
will provide you with good information regarding the nature of a process. Since
there are so many, this should be reserved only for processes that stand out as being
potentially outside of what the customer administrator teams determine to be
normal.

The netstat command with the “~rn” switch will display the hosts’ routing table.
(See Figure 4.10.)

www.syngress.com

92 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Figure 4.10 Displaying the Host Routing Table

root@Forensic3:/#
root@Forensic3:/# netstat -rn
Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.10.0 0.0.0.0 255.255.255.0 U [CI¢] 8 ethe
0.0.8.0 192.168.10.160 ©0.0.0.0 uG e e 0 ethe

root@Forensic3:/# ||

As you can see from Figure 4.10, this command yields eight columns. The first
two are pretty easy to decipher, where the route is headed and which gateway is
being used. In the event that no gateway is used, an asterix (*) will appear in that
column. The next column shows the “generality” of the route, or in other words,
the network mask for that particular route. The next column displays the flags that
can be set. The flag breakdown is:

G Gateway

U The interface being used is Up

H Only a single Host can be reached through the route, like the loopback
D The route has been Dynamically created

M Modified by an Internet Control Message Protocol (ICMP) redirect

! The route is a reject, and the packets will be dropped

Running Processes

It is important to know what is running on the host you are analyzing. This can be
accomplished by a few different commands. For the purposes of this book, I only
cover “ps aux” and “top.” (See Figure 4.11.)

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter 4 93

Figure 4.11 “ps aux” and “top”
I i

Hlo Edt yiew Jerminal Taps Lelp
USER PID WCPU NMEM ¥SZ RS5 TTY STAT START TIME COMMAND
oot 55

t 1 6.8 0.6 2948 1852 7 Aprl@ @:81 /sbin/imit
oot T 0.8 0.8] ar S¢ Aprl@ 0:00 [kthreacd]
root 3 0.8 0.8] er S¢ Aprle 0:06 |migration/8]
et 4 0.0 0.0 L] er SN Aprle 0:00 |ksoftirgd/e]
reat 5 0.8 0.0 L] er §< Aprld 0:00 |watchdeg/e)
et 6 0.8 0.8 L] er §< Aprle 0:89¢ [migration/1]
reat 7 0.8 0.8 L] er SN Aprie 0:09 |kseftirgd/l]
reat B 0.0 0.9 L] er S Aprle 9:00 |watchdeg/l]
et 9 0.8 0.8 L] er S Aprle 0:09 [events/9)]
et % 0.8 0.9 L] er S Aprle 0:00 [events/l]
reot 1 0.8 0.0 L] er S< Aprld 0:09 |khelper]
roat a 6.8 0.8] 87 S< Aprle 8:86 |kblockd/e)
roat 3z 8.8 0.8 8 87 S< Aprle 8:08 |kblockds1]
roat 33 8.8 0.8] 87 S< Aprle 8:08 [kacpid]
roat 34 0.8 0.8] 87 S Aprle 8:08 [kacpi_motify]
roat 158 8.8 0.8] 87 S< Aprle 6:08 [kserigd]
roat 177 8.8 0.8] 87 5 Aprie 8:88 [pdfiush]
roat 178 8.8 0.8] 87 S Aprle ©:88 [pdfiush]
oot 173 8.8 0.8 8 87 S Aprle 9:08 [kswapdd]
roat 8 8.8 0.8] B S< Aprle 8:08 [aio/o]
roal 231 8.8 0.8 8 87 S< Aprlo 8:08 [aios1]
cepogue 1314 8.8 8,1 5608 3008 pts/2 S5+ Aprle 8:09 bash
roat 185 0.8 0.8] (R S« Aprlf 8:88 |ksuspend uskd]
roat 266 8.8 0.8] 87 S< Aprle 6:08 |khubd)
cepogue 2135 6.8 0.8 1752 528 7 S B6:17 B:88 /binssh fusr/bingfirefox
cepogue 2147 0.8 6.8 1756 528 T 5 86:17 8:88 sbinssh susrlibsfirefox/run-sozilla.sh fusrslibsfirefoxsfirefox-bin
cepogue 2154 0.0 1.5 118300 34644 7 51 B6:17 8:82 usr/lib/firefox/tirefox-bin
" e 8.8 0.8] [%] 5< Aprlo 0:88 [Khpsbpkt]
roal 718 8.8 0.8] 87 5< Aprlo 8:08 [atase)
roa 211 8.8 8.8] 87 S< Aprlo 8:08 [atas1]
roat 72 8.8 0.8] 87 S< Aprlo 0:08 [ata_aux]
roat 11 8.8 6.8 6 87 S< Aprle 8:08 [knodesgrd 8]
roaf 173 8.8 0.8] 87 5< Aprle 8:08 [scsi_eh 6]
r 17 8.8 0.8] (R S< Aprle ©:08 [scsi en 1]
cepogue 2384 0.8 1.5 106776 31772 7 SU Aprle 8:29 pidgin
" 501 8.8 0.8] (R 5< Aprle 8:88 [kjournald)
roal 2706 8.8 0.8 384 1372 7 S<s Aprlf B:88 /sbin/udevd - -daemon
roat 3730 0.8 0.8 PR €« Aprif 8:08 [kpsmoused]
roat IS 8.8 0.8] ar S« Aprld 0:08 [kmecd]
roat W13 0.0 0.8 a [R S< Aprld 8:00 [pccardd]
reat 3981 6.0 0.8 [[R] S« Aprlé 0:62 [rt73usk]
roat 4399 0.0 0.8 3792 908 7 S5 Aprid 0:08 /sbin/mount.ntfs dev/sdal /medin/sdal -0 rw,umaskege?,gidsde
root 4635 0.0 0.0 1696 520 tiyd Ss+ Aprlo 0:00 /sbin/getty 30408 ttyd
roat 4636 0.0 0.8 1696 520 trys Ss+ Aprlf 0:08 /sbin/getty 38408 ttyS
roat 4541 0.0 0.8 1692 516 tryd S5+ Aprlf 0:08 /sbin/getty 38408 tty2
roat 4642 0.0 0.8 1696 520 tryd Ss+ Aprld 0:08 /sbin/getty 38408 ttyd
reat 4641 0.0 0.8 1696 520 tryl Ss+ Aprif 0:08 /sbin/getty 38408 ttyl
roat 4642 0.8 0.8 1697 516 Tty Ss+ Aprif 0:08 /sbin/getty 38408 tiye
rest 4857 0.8 0.8 2436 134 7 S5 Aprif 0:08 fusr/sbin/acpld -¢ Jetc/atpl/events -5 fvar/run/acpid. secket
reat 4984 0.0 6.8 et S< Aprid 9:08 |kosdemand/8]
reat 4905 9.0 0.0 (] [] S< Aprle 0:00 [kondemand/1]
syslog 4976 0.8 0.8 1916 732 7 S5 Aprlo 0:08 /sbin/syslogd -u sysleg
reat 831 0.0 0.8 1240 S48 7 S Aprld 8:80 /binsdd bs 1 if sprocskesg of Sfvarsrunsklogdskecy

The “ps aux” command shows all running processes using the BSD syntax, and as
you can see from Figure 4.11, the output is separated into 11 columns. Paramount
among these, at least in terms of a forensic investigation, are the “USER”,“TTY”,
“START”,“TIME”, and “COMMAND.” Each will be important for different rea-
sons depending on what you are trying to determine, and can easily be parsed with
a text utility (like Textpad') or from the command line using “grep.” Whatever the
case may be, these entries will tell you who started the process, from where, when,
and the command that was used. This information can also be used in conjunction
with data from the user shell history and the network log files for correlating certain
events. For example, in Figure 4.11, you can see that the user “cepogue” started a
process called “Pidgin” which was started on “Apr10,” has been running for “0:34”
minutes, and was launched with the command, “pidgin.” Some items of note within
this information, however, are the time and the command.

The time shows that the process has only been running for 34 minutes. What this
means is that this column denotes the amount of time the process has been running

! www.textpad.com/

www.syngress.com

94

Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

on the CPU and not the time that has elapsed since the program was launched, since
most programs spend a great deal of time waiting for other stuft to happen before
they actually need time on the CPU.

The command column in this example simply shows a single word, “pidgin.”
This can mean one of two things. Either the binary is in my user path, or I launched
it from a graphical user interface (GUI). In the case, the latter is true. Had I ran the
binary from the command line using the full path, the entry in the “COMMAND”
column would have read /usr/bin/pidgin.

The process state code, shown as “stat,” is not something you will likely use
during an investigation. The codes show what state the process is currently in, or
at least the time you issued the command. The codes are:

m D Uninterruptible sleep (usually 10)

m R Running or runnable (on run queue)

m S Interruptible sleep (waiting for an event to complete)

m T Stopped, either by a job control signal or because it is being traced
m W Paging (not valid since the 2.6.xx kernel)

m X Dead (should never be seen)

m Z Defunct (“zombie”) process, terminated but not reaped by its parent

For BSD formats and when the stat keyword is used, additional characters may be
displayed as:
m < high-priority (not nice to other users)
m N low-priority (nice to other users)
m L has pages locked into memory (for real-time and custom 10O)
m s isasession leader

m 1 is multi-threaded (using CLONE_THREAD, like NPTL pthreads do)

m + isin the foreground process group

The “top” command shows exactly what you think it would show, the running
processes that are using the most CPU. (See Figure 4.12.)

www.syngress.com

Initial Triage and Live Response: Data Analysis ¢ Chapter 4 95

Figure 4.12 Running Processes Using the Most CPU

a 4 S

Ble Edt Mew Jerminal Tahs Help

top - 8B:37:27 wp 21:26, 4 wsers, load average: .67, 0.82, 0.00

Tasks: 123 total. 2 rumning. 119 sleeping, @ stopped, 2 rosbie

Cpuis): 18.1%s, 2.7y, 0.6%nd, B87.7%id, 0.0%wa, 0.6%hi, B.6%s1, B.0Ast
Mem: 2075816k total, 886100k wsed, 1189716k I'H:: 144824k buffers

Swap i Ok total Ok used, ok free, 481068k cached

5433 root 150 315! 36! 93?.‘ H 9 LB %14 Xorg
17196 cepogue 15 0 105m 348 ld4a § 7 L7 0:07.27 gimp
19961 cepogue 17 0 32268 10w 7564 5 4 0.5 0:00.12 screenshot
5656 cepogue 16 0 17860 lom 7424 5 2 8.5 0:27.76 metacity
5658 cepogue 15 0 47688 2im 1dm 5 1 L@ 0:14.02 gnome-panel
5452 root 21 8 18112 4812 1556 5 B 0.2 4:55,.43 daemon.py
5650 cepogue 15 0 38248 9854 7796 5 0 0.5 0:61.08 gnose-settings
5845 cepogue 18 0 38864 10m 6388 5 O 0.5 0:80.66 notification-da
5992 cepogue 15 0 71188 2im lem R 0 1.1 8:19.21 gnose:terminal
19342 root 15 @ 2364 1172 B76R 0 0,1 0:80.02 Top
1 root 15 @ 7948 1852 5325 0 6.1 0:61.23 init
2 root W 5 @ 8 85 0 8,8 0:00,08 kihreadd
3 root AT 5 @ @ 85 0 9.0 08:00,18 migration/o
4 root 34 13 8 8 85 0 6.8 0:00,07 ksoftirgd/e
5 root AT 5 8 8 85 8 6.8 0:60.08 watchdogse
6 root AT -5 B 8 85 8 8.8 8:80,14 migration/1
7 root 34 19 8 8 85 0 0.0 0:00.00 ksoftirgd/l
8 root AT -5 8 8 85 8 8.8 0:60,08 watchdogsl
9 root B 5 8 8 85 0 0.8 0:0069 events/8
18 root W 5 8 8 85 0 6.0 0:00,08 events/]
11 root 17 -5 @ 8 85 8 0.0 8:80,89 khelper |
31 root W 5 8 8 85 B 6.6 0:00,82 kblockyse
32 root B 5 8 8 85 8 6.0 0:60.09 kblockdsl
33 root @ -5 8 & 85 0 0.8 0:00.08 kacpid
34 root 2 .5 8 8 85 8 0.0 0:90,00 kacpl netify |
158 root 4 5 8 8 85 8 6.6 0:60089 kseriod
177 root 2 8 @ & 85 B 6.6 0:00,80 pdflush
178 root 15 8 @ @ 85 8 6.0 0:60,80 pdfiush
179 root 15 -5 8 8 85 0 6.0 0:00,08 kswapls
738 root 15 -5 8 8 85 8 6.0 0:00,00 aiosd
231 root 15 55 8 8 85 0 6.0 0:60.08 aiosl
1314 cepogue 15 0 5608 3008 1434 £ 0 6.1 0:80,18 bash
21685 root 18 -5 6 8 85 0 0.8 0:80.00 k(umfrd uskd |
2106 root 18 .5 6 85 8 0.6 0:60.0
3138 cepogue 24 0 1753 538 4485 0 6.6 0:60.68 Tirefox |
2147 cepogue 25 0 1756 528 4445 0 6.8 0:00.08 run-mozilla.sh
2154 cepogue 15 0 115 33m 19§ 0 1,7 6:62,08 firefox-bin
2178 root B -5 8 & @5 6 6.6 0:00,00 khpshpkt
2218 root W 5 8 & @5 4 0.0 0:60.06 atase
2211 root W 5 8 & 85 8 6.0 0:00.00 atasl
212 reot 1 5 B8 8 85 8 0.0 0:00,00 ata aux
2272 root @ 5 B8 8 85 0 6.0 0:00,00 knodesgrd 0
2273 root 15 8 8 85 8 0.0 0:80,00 scsieh @
2274 root 1 5 8 8 85 8 0.0 0:00,06scsi eh]
2384 cepogue 15 0 1048 3lm 19a 5 0 1.5 B:28.99 pisgin
2501 root 0 -5 B 85 0 0.0 0:90,39 kjeurnald
2706 root 1 -4 s wes 00l e udevd
3730 root u o5 0 85 0 0.8 0:00.00 kpsmoused

Figure 4.12 shows the output from the “top” command on my local host. As you
can see, the results are 12 columns, which don’t look entirely unlike the same
columns we saw from the “ps” results. Again, the columns of the most interest in an
investigation are “PID, “USER,” “TIME+,” and “COMMAND.”

You will see a bit of a difference in the “TIME” column from the “ps” command
and the “TIME+” shown in Figure 4.12. “Top” shows more granularity by listing the
CPU time down to the hundredth of a second.

There are also two additional columns which again, don’t hold any real forensic
value, but I will explain so that you know what they are. The “PR” column stands for
PRiority, and denotes well the priority of the task, and the “INI”” column stands for Nlce,
and indicates the nice value of the task. With this value, the smaller the number, the less
nice it is to the other processes, or the higher priority it has. A zero in this column simply
means that the priority will not change when determining the task’s dispatchability.

Open File Handlers

The “List Open Files” (Isof) command is used to show which files were and are
opened by which processes. (See Figure 4.13.)

www.syngress.com

96 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Figure 4.13 Open Files

Bl Edt yiew Jermnal Taps Lelp

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

init 1 oot owd DIR 8.5 4096 2/

init 1 root rtd DIR B35 4036 2/

init 1 root txt REG 8,5 88672 5292684 /sbin/init
imit 1 reot mea REG 8,5 1339816 9978834 /Lib/T1s/ 1686/ oo/ Libe-2.6.1.50
init i reot mem REG 85 189148 9945101 Flib/1d-2.6.1.50
imat i oot fu CHR 5.1 2265 fdev/console (deleted)
ind i rest lu CHR 5.1 2265 fdev/console (deleted)
imat 1 reat u CHR 5,1 1265 fdev/console (deleted)
imat i reat 3 unix Gxdfdeds4e 8571 socket

init i oot ar DIR 8,10 e 1 finetify
indt 1 reet Sr FIFD [X 8572 pipe

init 1 et 6w FIFD 8,6 8572 pipe
kthreadd b roat owd DIR 8,5 4896 27

Kthreadd 2 roat red DIR [4856 24

kthreadd 2 root txt unknown Jproc/2jexe
migration 3 root owd OIR [%] 4896 24

migration 3 roat red OIR 8,5 4896 2

migration 3 root txt unkmown fpreciijexe
ksoftirgd 4 root owd OIR 8,5 4096 T/

ksoftirgd 4 roat red OIR 8,5 4096 2/

ksoftirgd 4 roat txt unknown precidjene
watchdog/ 5 root owd DIR 8,5 4855 27

watchdog/ 5 root rtd OIR 8,5 4856 27

watchdog/ 5 oot txt unkeown procsfexe
migration 6 roat owd BIR [X] 4896 24

migration 6 oot rtd DIR 8,5 4896 T

migration & root txt unknown fprociGiese
ksoftirgd 7 root cwd oIk [X 4896 27

ksoftirgd 7 roat red DIR 8.5 4896 2

ksoftirgd 7 oot txt unkeown fproc/T/exe
watchdog/] root cwd OIR B.5 4856 by

watchdog/] reat red oIR 8,5 4896 b

watchdog/ 8 oot txt unknown fproc/Bexe
events/8] root owd DIR B.5 4856 -

events 8] root rtd DIR 8.5 4096 T4

events/8] roet txt unknown proci9fexe
events/1 18 root cwd BIR 8,5 4896 2

events/1 18 root red BIR 8.5 4856 24

events/1 18 roat txt unknown fproc/18/exe
khelper 1 root owd 8.5 4056 24

khelper 1 reot rtd bIR 8,5 4856 -

khelper 1 root txt unkmown fproci 1) fexe
kblockdfa 31 root owd L&) 4056 T/

kblockdra 31 reat red oIk 8,5 4096 2¢

kblockd e n reat txt unknown fproc/3lfexe
kblockdsl 32 root owd 8,5 4056 24

kblockdsl 32 reat red oIR 8,5 1096 -y

kblockdsl 32 Fodt txT unketwn fprec/azsese
kacpid 33 reat owd OIR [X 4096 34

kacpid 33 roat red OIR 85 4096 F ¥

kacpid 33 roet txt unketwn fproc/3dsene
kacpi mot 34 roat owd [X] 2056 -

kacpi mot 34 rest rtd oIR 8,5 2056 24

As can be seen in Figure 4.13, the output from this command, without any

additional switches, is separated into nine columns.You can see that I had to pipe my

original “Isof” command to “more” since it yielded so many lines of output. In fact,

by sending the output to an outfile called “foo,” then cat’ing that file and piping that

out to “wc —1,” I found that the standard “Isof” command provided me with 404 lines
of output. Which is really not all that bad, but that is my local Ubuntu workstation,
not a server. A standard Linux server would probably have five times that many lines.

So be sure to use a good text parser (again, like textpad) to effectively wade through

the data to find what you are looking for.

Some of the switches which I have found useful in narrowing your focus if you

can get console access are (from the Isof man pages):

To list all open Internet, x.25 (HP-UX) and UNIX domain files, use:
lsof -i -U
To list all open IPv4 network files in use by the process whose PID is 1234, use:

lsof -1 4 -a -p 1234

www.syngress.com

Initial Triage and Live Response: Data Analysis ® Chapter 4

Presuming the UNIX dialect supports IPv6, to list only open IPv6 network
files, use:

lsof -i 6

To list all files using any protocol on ports 513, 514, or 515 of host
wonderland.cc.purdue.edu, use:

lsof -i @wonderland.cc.purdue.edu:513-515

To list all files using any protocol on any port of mace.cc.purdue.edu
(cc.purdue.edu is the default domain), use:

lsof -i (@mace

To list all open files for login name “abe,” or user ID 1234, or process 456,
or process 123, or process 789, use:

lsof -p 456,123,789 -u 1234,abe

To list all open files on device /dev/hd4, use:

lsof /dev/hd4

To find the process that has /u/abe/foo open, use:

lsof /u/abe/foo

Additionally, I like to use the “+L1” switch to display all of the unlinked
(or marked for deletion) files. (See Figure 4.14).

Figure 4.14 +L1 Switch

Ele Edit View Terminal Tabs Help
root@Forensic3:/# lsof +L1

COMMAND
init
init
init

PID USER FD TYPE DEVICE SIZE NLINK NODE MAME

1 root au CHR 3;1 7] 2265 fdev/console (deleted)
1 root lu CHR 5.1 2] 2265 /dev/console (deleted)
1 root 2u CHR 5,1 1] 2265 /dev/console (deleted)
deskbar-a 5805 cepogue 21r REG 8,5 1345 ® 4145316 /home/cepoque/.mozilla/firefox/12726kwg.default/prefs.js

root@Forensic3:/# ||

This command switch has proved itself useful more than once, when an illicit

user has tried to cover their tracks by deleting something.

97

www.syngress.com

98 Chapter 4 ¢ Initial Triage and Live Response: Data Analysis

Summary

Gathering the volatile data is one thing, knowing what the heck it means is something
else entirely. Hopetully, you now have a decent understanding of the commands that
we discussed in Chapter 3, what the output looks like, and why it’s important.
Remember, each case will be difterent, so likewise will the information you gather.

Be flexible (Semper Gumby!) and be smart.

Simply gathering the data, and even understanding it is only the beginning to an
effective analysis. Do not forget that the information you gather needs to be corre-
lated. Compare your volatile data with the shell histories, localhost logs, network logs,
and anything else the customer can provide you with. Never look at a single piece of
information as the “end” of a trail, but as a piece of a larger puzzle, you just need to
figure out where it fits in.

The beauty of Linux is that there is always more than one way to do something
and likely more than one thing that is keeping track of those things. If a tool or
utility is unfamiliar to you, test it out in your lab. Find out what it does, how it does
it, and what it looks like. Often you will find that the work you do in the lab can
make or break your case.

www.syngress.com

