Materials Science

Share this article:

Materials Science

  • Join our comunity:

Tiny Nanoparticles Could Help Repair Damaged Brain And Nerve Cells

By: , Posted on: September 27, 2017

When our brains develop problems, such as degenerative diseases or epilepsy, some of the trouble can be electrical. As nerve signals involve electrically charged particles moving around, medics often try to treat associated problems using implanted electrodes. But this is a clumsy and difficult approach. A much better idea could be to implant tiny structures deep in the brain to act almost as miniature electricians. It may sound like science fiction, but it is moving fast towards reality.

Attilio Marino and colleagues at the Smart Bio-Interfaces group at the Italian Institute of Technology in Pontedera are striving to bring the idea to the clinic. They summarise progress in the field in a news and opinions article in Nano Today.

Nanomaterials are showing great potential in biomedicine since they can interact precisely with living systems down to the level of cells, subcellular structures and even individual molecules,” says Marino.

Marino is most interested in ‘piezoelectric‘ materials, which can convert mechanical stimulation into electrical energy, or vice-versa. He is exploring using ultrasound to mechanically stimulate nanoparticles into creating electrical signals that may fix problems with brain cells.

He points out that ultrasound offers a way to get a signal deep into brain tissue without using invasive electrodes, which can cause other problems including inflammation. Some researchers try to get round these difficulties using stimulation with light, but light cannot penetrate very deeply so ultrasound is a better option.

The field is still in its early days. Researchers are mainly studying the effects of piezoelectric nanoparticles on cultured cells rather than in animals or people, but the results are promising. Marino’s team, for example, shows that using ultrasound to stimulate nanoparticles embedded in nerve cells can increase the sprouting of new cell-signalling appendages called axons. This is exactly the kind of effect that may one day repair degenerative brain disease.

“We used barium titanate nanoparticles and confirmed the effect was specifically due to the piezoelectricity of our materials,” says Marino.

Other researchers are working with the ‘stem cells‘ that can develop into a wide range of mature types of cell needed by the body. Some are finding that piezoelectric nanomaterials can stimulate stem cells to begin their transformation into a variety of functional cell types.

A long road of safety studies, animal tests and eventual clinical trials lies ahead. But Marino is optimistic, he concludes: “The preliminary successes strongly encourage us that our research is a realistic approach for use in clinical practice in the near future.”


You can read the article for free for a limited time:

Marino, A., et al.: “Piezoelectric nanotransducers: The future of neural stimulation,” Nano Today (2017)

To browse books in Nanotechnology, click here. Save up to 30% when you order via Elsevier. Enter STC317 at the checkout

Connect with us on social media and stay up to date on new articles

Materials Science

The highly interdisciplinary field of materials science examines elements of applied physics and chemistry, as well as chemical, mechanical, civil, and electrical engineering. Nanoscience and nanotechnology in particular have yielded major innovations in this area, such as graphene and carbon nanotubes. Elsevier’s authoritative content in this area ranges from undergraduate textbooks to multi-volume reference works investigating the relationships between the structure of materials and their properties. Our journals (including Materials Today), books, and eBooks help researchers stay abreast of developments in this swiftly advancing field, coving major sub-disciplines like energy and power; metals and alloys; ceramics; composite materials; polymer science and biomaterials; interdisciplinary materials science; and structural materials.

Social Media Auto Publish Powered By : XYZScripts.com