Share this article:


  • Join our comunity:

In Conversation with Hiroshi Amano

By: , Posted on: April 22, 2015

hiroshi award 1On 7 October 2014, Hiroshi Amano had one of the surreal experiences of his life. He arrived in Frankfurt, Germany, on a flight from Japan and quickly checked his emails before boarding another flight to Lyon, France. “I had many e-mails entitled ‘Congratulations’ or ‘Omedetou (in Japanese)’ but I did not have time to check the contents,” he explains. “I thought they were spam mails.”

This article originally appeared on Materials Today. Click here for the original article or continue reading below:

Upon arriving in France, he stepped out of the airport arrivals hall into a crowd of excited journalists. One of whom informed Amano that he had been jointly awarded the Nobel prize in physics with his former supervisor Isamu Akasaki and another Japanese scientist Shuji Nakamura. “It was really unexpected,” he says. In fact, he was so surprised that at first he thought it must be a joke or a mistake.

The third volume of the Handbook of Crystal Growth describes Amano’s and others’ recent work to improve our fundamental understanding of the growth of nitrides by MOCVD and MOVPE for a range of nitride-based devices.

The Nobel committee had awarded the prize to these three researchers for inventing efficient blue light-emitting diodes (LEDs) which enabled the development of white LEDs. Today, white LEDs are the most energy efficient and longest lasting bulbs on the market, and can be found lighting our homes and business and inside our TVs, computers and mobile phones. In 2012, more than 210 billion LEDs packages were reportedly produced worldwide – this is approximately 30 for each person on Earth.

“It was really unexpected,” said Hiroshi Amano . In fact, he was so surprised that at first he thought it must be a joke or a mistake.

To create white light, LEDs that produce all three of the primary colours of light are needed. By the end of the 1960s, red and green LEDs had been successfully made but LEDs that produced blue light were to prove elusive. Akasaki had identified that gallium nitride was the most likely candidate, but his group were struggling to grow crystals of the material of a high enough quality. Additionally, while n-type gallium nitride semiconductors were proving fairly easy to make, the p-type counterpart was not. Amano overcame both those hurdles whilst working under Akasaki’s supervision in the late 1980s. “My contribution was showing that the high quality GaN can be grown on a sapphire substrate by depositing low temperature AlN buffer layer before the growth of GaN and also that p-type GaN can be made by Mg doping followed by low energy electron beam irradiation treatment,” he explains.

Since those discoveries, Amano has gone on to set up his own successful research team currently based at Nagoya University – which is also where he did his Nobel prize-worthy research in the 1980s. His team works broadly on growing novel crystals of semiconducting group 3 nitrides with the aim of enabling the development of other sustainable devices. These crystals are grown either by MOCVD (metalorganic chemical vapor deposition) or the related technique MOVPE (metalorganic vapour phase epitaxy).

Read more on SciTech Connect – Ice Crystals Give Up Their Secrets in Microgravity

hiroshi chairThe design of LEDs that produce deep UV light has been one of Amano’s team’s most significant recent developments. Photons of deep UV light interact with a huge variety of different chemical and biological molecules and these types of LEDs are expected to find use in applications ranging from sensing to cleaning up pollutants. “The most exciting research carried out in my group recently was realising high efficiency deep UV LEDs by a high temperature MOVPE  growth method,” Amano says. The team are also working on designing improved nitrides for powering more energy-efficient heterojunction field-effect transistors and laser diodes.

To achieve the atomic-level control needed to grow nitrides suitable for these applications; Amano’s team spend much of their time studying how the growth processes occur. They are currently developing a method to observe the growth of InGaN and related semiconductors in almost real-time inside an x-ray diffractometer. “A fundamental understanding of the growth process is essential for realizing new types of devices,” he says.

Since winning the Nobel prize, Amano says he has been inundated with invitations to give talks. “By the end of this year, I will have given more than 200 lectures since the prize was announced. Of course it is busy, but I am enjoying these unexpected encounters with researchers in the different fields to my own,” he says. “I learn a lot through discussions with researchers with different specialties.” It is also talking with others that he credits for his success so far: “I have got many of my inspirations though discussions with my colleagues.”

The third volume of the Handbook of Crystal Growth, published by Elsevier and available on ScienceDirect, describes Amano’s and others’ recent work to improve our fundamental understanding of the growth of nitrides by MOCVD and MOVPE for a range of nitride-based devices.


One of the oldest scientific disciplines, the study of physics continues to expand the scope of human understanding, from the nano-scale to the dimensions of our universe. Elsevier’s extensive collection of physics books, journals and resources represents the expanding nature of this deep, wide, and interdisciplinary field. We offer major reference works, textbooks, monographs, series, and handbooks covering areas such as optics; atomic, molecular and plasma physics; condensed-matter physics; non-linear, statistical and applied physics; and surfaces and interfaces.